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Although the flux-difference splitting methods for solving the
Euler equations are generally very robust and no explicit dissipation
is required. There are situations where exptlicit dissipation is needed.
Two cases, a stowly moving shock problem and a blunt body calcula-
tion, are discussed in this paper. The slowly moving shock problem
is tested extensively by Roe’s Riemann solver and a cure for Roe's
Riemann solver is proposed. For the second-order scheme it is
found necessary to reduce the second-arder accuracy to first-order
accuracy inside the shock layer. For the supersonic blunt body calcu-
lation adding dissipation in the linear waves in Roe’'s Riemann solver
can prevent numerical instability in the subsonic pocket. The draw-
back of Yee's formula to cure the instability when used on viscous
flow calculation is demonstrated. A better solution hased on the
pressure gradient is proposed. © 1995 Academic Press, Inc.

i. INTRODUCTION

In the past decade there has been tremendous progress in
solving the nonlinear hyperbolic system of equations, especially
the Euler equations governing inviscid flow problems in fluid
dynamics. The flux-difference splitting schemes [ 1], which em-
ploy Riemann solvers, are perhaps the most successful approach
in solving such problems. The flux-difference splitting schemes
are very robust and usually no explicit dissipation is required;
nevertheless there are situations where extra dissipation is
needed. Two cases of problems with the Euler equations will
be discussed in this paper. The first one is the slowly moving
shock problem, which was first discussed by Collela and Wood-
ward | 2] and later by Roberts [3]. The second one is the numeri-
cal instability, called the **carbuncle phenomenon,” associated
with blunt body calculation, which was known for some time
but only reported recently in literature by Peery and Timlay [4].
This paper differs from previous works by providing more
understanding to both problems and possible cures with special
emphasis on the Rieman solver of Roe [5].

This paper is organised as follows. In Section 2, we first
review the slowly moving shock problem, follow by the numeri-
cal result of Roe’s Riemann solver. A cure based on explicit
dissipation is proposed. A suggestion for second-order schemes
is also provided. In Section 3 the carbuncle phenomenon is
introduced. The drawback of the popular formula due to Yee
|6} when used for Navier—Stokes calculation is demonstrated
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with a simple boundary layer calculation. An improved solution
based on the formula of [4] is demonstrated. Section 4 concludes
this paper. )

2. THE SLOWLY MOVING SHOCK PROBLEM

2.1 General Review

1t has been observed for some time that when a shock is
moving slowly, some vpwind schemes produce wiggles in the
post shock region, even when those schemes do not produce
oscillations for a scalar equation. This difficulty can only hap-
pen in coupled systems, it does not occur in a scalar equation
or in systems of equations that can be decoupled.

The non-monotone behaviour is certainly unwanted in un-
steady flow calculations. it may also cause convergence diffi-
culty when one uses the time marching approach to find the
steady state solution.

The first detailed account of this problem was given by
Colella and Woodward [2}]. They observed that low amplitude
postshock oscillations occurred when the characteristic speed
associated with a strong shock, measured relative to the grid,
vanished. Since the dissipation introduced by Godunov’s
method vanished as the shock speed went to zero, they argued
that dissipation in a slowly moving shock using Godunov’s
method was not sufficient to guarantee correct entropy produc-
tion across the shock,

They showed an example for an extremely strong shock
moving slowly from right to left. There were substantial oscilla-
tions in both the entropy and the Riemann invariant 4 — 2a/
(y — 1), but the quantity ¥ + 2a/(y — 1) the Riemann invariant
transported along the {1 -+ a) characteristic was well behaved,
where i, a, and -y are the velocity, sound speed, and ratio of
specific heats, respectively. Their explanation was that in a
{u + a) wave any errors generated in the associated Riemann
variable were immediately driven back to the shock transition
layer while in the u and ¥ — a waves the errors were catried
away from the shock (see Fig. 1), therefore postshock oscilla-
tions only appeared in nonlinear system of equations. Extra
dissipation was added to suppress the oscillations.

More recently Roberts [3] compared Godunov's {7], Roe’s,
and Osher’s [8] schemes on a Mach-3 shock which took 50
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FIG. 1. Wave diagram for explaining the noise propagation.

steps to cross a cell for CFL number 0.95. He showed Osher’s
scheme behaved guite well while Godunov’s and Roe's
schemes exhibited obvious postshock oscillations not only for
extremely strong shocks but also for weak shocks. He also
showed that the results from Roe’s scheme with minmod limiter
were worse than those from the first-order Roe’s scheme. The
reason is because a second-order scheme has less dissipation to
suppress the oscillations. One more interesting result, obtained
from Osher’s scheme with natural ordering of wave paths,
showed that it was not as good as the original schemme which
used reversed ordering of wave paths. He also argued the oscil-
lations would oceur for any schemes with flux functions that
give “‘exact’”’ shock resolution such as Godunov's and Roe’s
schemes.

2.2, Numerical Experiments on Roe's Scheme

Our purpose in doing the numerical experiments is to find
the parameters associated with the postshock phenomena.

The initial data in our tests are obtained by superimposing
a velocity on a zero-velocity shock. This velocity can be either
positive or negative. The shock condition is labeled by “*Mach
Number X.”* Here the ‘‘Mach number X'’ shock means the
shock data, such as the pressure jump, are obtained from the
steady normal shock relations for Mach number X and ratio of
specific heats y = 1.4.

From numerical experiments we found the relative shock
speed is important. If the shock moves slowly or fast enough
then the oscillations are very small. The maximum amplitude
of density oscillations for shocks moving from low density to
high density region is bigger than that for shocks moving in
the opposite direction, but for entropy oscillations the situation
reverses. To nondimensionalise the shock velocity the shock
speed is divided by the value of (u + a) in the right side state.
The nondimensionalised shock speed is called SR. The reason
to use (u + a) of right state instead of the associated characteris-
tic speed 1s simply to avoid the SR value becoming too small;
nevertheless, it seems to work well. Figure 2 gives the maximum
amplitude of density oscillation versus SR. The SR value which
produces maximum oscillation is around £0.035; SR = —0.035
with the CFL number 0.95 is very close to Roberts’ test. The

peak error for a downstream moving shock is higher than that
of an upwind moving shock in Fig. 2. If the SR is plotted with
respect to the entropy error the peak of the upstream moving
shock will be bigger.

2.3. Roe’s Scheme with Dissipation

Although Osher’s Riemann solver is superior for slowly
moving shock calculations, it is quite expensive computation-
ally and difficuit to use on more complicated problems, such
as real gas, reacting gas, etc. because of the evaluation of the
flux integral. Besides the superiority could be lost when it is
used on more complicated problems where the flux integration
can not be exactly evaluated.

In contrast Roe’s scheme is much cheaper to run and much
easier to extend to more general flow problems. Therefore we
want to modify Roe’s scheme to cure its postshock oscillations,
We first tried to incorporate a contribution from the sonic point
within a shock, which hopefully simulates Osher’s Riemann
solver to some extent. The results are rather disappointing. The
theoretical analysis of discrete shock profile for the scalar case
was made by Jennings [10]. To perform similar analysis for
system is nevertheless difficult. We therefore resort to add-
ing dissipation.

Consider the one-dimensional Euler equation

oW, oF _

—+—==0, l
a oW 0 M
where
P pu
W= lpu|, F=|pu*+P
€ (e + P)
and

P = (y — Die — 0.5pu7),
where p, P, and e are the density, pressure, and energy, respec-

tively. A first-order conservative scheme using interface flux
formulation is

At
W.::H—l - “"l”I + E [HH- lfz(wl':l’ W!’"-i-l) - Hl'— UZ(W?—I! wf):ll = 0?
(2)

where n is the time index and i is the grid index.
In Ree’s approach, the interface flux is

HR(W,, W;) = §(F, + Fg) — %Ek: |AdeE =0, (3)
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FIG. 2. Density oscillation magnitude vs SR for Roe’s schenie.

where A, o, and E, are the eigenvalues (wave speeds), wave
strengths, and eigenvectors, respectively. The wave speeds are
=u, A=uta

(4)

)‘-i =u—a,
and the wave strengths and eigenvectors are given in [5].
In order to break up the unphysical solutions that can arise

from this formula, Harten [11] used

HE= (W, W,) = §F, + F,) — %Eﬁ |QifoxE; =0, (5)

where
[vel: vl > 8
=91 (vi+ &
i( : (S ): gvk[S_é\
and
At
=i
Ve My

at the expense of some deterioration in accuracy, especially at
the shock.

The postshock oscillations can be sappressed by this dissipa-
tion with well-tuned & and the solution guality can match that
from Osher’s scheme. But the main disadvantages are that §
needs to be adjusted for each case and it is CFL number depen-
dent. We modify this formula by considering (; as a function
of v, Av, and Ar™*, where (J; is the difference of the CFL
number in the same type of wave and Ar™* is the local maximum
allowed time steps. The modified Q, is given by

Ivkll ]Vkl >4
Q=191 /vi+ 8% (6)
5 ( 5k ) ,Vk[ = 6
and
Ar
5& = WAV&&I,
where

Ay, = I(W)R - (Uk)Ll

and &' is taken as 0.5 from numerical experiments. This is only
implemented in the intervals which contain sonic points. Figure
3 shows side by side comparison of several schemes on the
Mach 3 shock. Acceptable results are obtained with the modi-
fied dissipation.

2.4, Second-Order TVD Schemes

For applications, a second-order TVD scheme is usually
needed. But it produces significant larger oscillations than the
first-order schemes whether the Osher’s or Roe’s Riemann
solver is adopted, see Fig. 4.

The cure we propose is that if the grid interval between left
and right states contains any sonic point then we switch off
the limiter. Therefore the first-order flux is vsed in such inter-
face. This proves to work well. The width of shock transition
does not increase and the postshock oscillations are decreased
to nearly the same level of those from first-order schemes. The
method is especially easy to implement in schemes using the
Osher’s solver, which has a built-in sonic point check. Note
that in the sonic interval the limiter function is not necessarily
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FIG. 3. Comparison of entropy oscillations for first order schemes with
Mach number 3 and SR —0.035.

zero because inside the shock transition layer the flow may be
smooth. It is only in the corner of the shock profile one can
be sure that it reduces to first-order accuracy.

In general sonic points include not only the sonic point in
the compression wave but also the sonic point in the expansion
wave. It is well known that the numericai sonic flux for the
expansion wave is not appropriate to simulate the physical
expansion. Using a limiter for the sonic flux will produce worse
results. Therefore it is reasonable to switch off the limiter when
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FIG. 4. Comparison of entropy oscillations for second order schemes
with Mach pumber 20 and SR —0.035 (Lax~Wendroff TV scheme with
minmod limiter).

FIG. 5. A typical carbuncle phenomenon at Mach number § using first-
order Roe/Osher scheme.

evaluating the sonic flux in all cases. For the second-order
scheme using Roe’s Riemann solver the same technique can
be applied together with the dissipation described in Section
2.3. The result is much improved. Figure 4 give comparisons
of results from using this approach.

This method should be quite useful for the unsteady calcula-
tions; however, it is found that this limiter-off approach is
not suitable for implicit schemes for steady state calculations
because it introduces nonsmoothness, which usually cause con-
vergence difficulties.

3. THE CARBUNCLE PHENOMENON

3.1. Introduction

1t has been observed by some people for some time that Roe’s
and Qsher’s approximate Riemann solvers produce instability
when used to compute supersonic flow over blunt bodies, €.g.,
Fig. 5. Nevertheless it is only recently that Peery and Imlay
[4] first reported this instability in the literature. According to
them this instability was called the “‘carbuncle phenomenon’
by the researchers at NASA. The reason for such behaviour is
not clear. ’
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If one uses the free stream condition as an inittal condition,
the bow shock will form at the solid boundary then gradually
travel to its final position. During the early shock evolution
there is no problem. It is when the shock approaches its final
position that the instability begins to appear. Sometimes the
solution breaks down completely. In some cases the instability
phenomencn is not obvious and the shape of the bow shock
looks fairly normal but one can still see from the Mach contour
plot that the constant Mach lines are not ctrcular but distorted
inside the subsonic pocket.

Peery and Imlay also reported the flux vector splitting of
Steger and Warming {12] had no such problem. Together with
our own experience on the flux vector sphtting of Van Leer
[13} the flux vector splitting schemes appear to be clear of the
carbuncle phenomenon, although they do have other problems
(see Section 3.2).

In the two-dimensional problem the flux difference schemes
solve the Riemann problem normal to the grid boundary, e.g.,
Chakravarthy and Osher [14]. In two dimensions there are
four waves,

rMN=V.—a, A=V, M=V +a (7)
where V, and a are the normal velocity with respect to the grid
interface and the interface sound speed, respectively. When
Roe’s Riemann solver is used, the formula due to Yee [6] is
the most popular to aid convergence and to break possible
unphysical expansion shocks. In Yee’s formula the Q(A,),
which replaces A,, is given by

Il Al = &
&= %[sign(/\k)ﬁ;(ﬁ+ Ak]: | A = 8, ®
where
& = SE(|Va| + |V + a). (%)

Here V, is the tangential velocity with respect to the grid inter-
face. Note that 2 more appropriate extension of Harten’s dissipa-
tion in Section 2.3 is to use

8 = 8¢ (|Va] + ). (10)
The dissipation is not necessary for V, waves for breaking
expansion shocks; however, in the supersonic blunt body calcu-
lation we do need it for the V, waves. for the second-order
upwind TVD scheme we used (see [9] for more details) the
dissipation coefficients for V, linear waves have to be set to quite
a large value to overcome this instability but the coefficients for
V, + a and V, — a waves are not important. The necessity to
add dissipation on the V, waves might explain why the flux-
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FIG. 6. Dissipation effect on numerical boundary layer thickness.

vector splitting does not have this problem since it is very
dissipative for the V, waves.

We need a larger number for 6% and 6% than that for the
symmetric TVD scheme of Yee. Nevertheless Pfitzner et al.
[15] reported that even for the first-order scheme the values of
§F have to be greater than 0.25, which agrees with our experi-
ences, although 0.25 seemed to be the largest value Yee [6] em-
ployed.

3.2. Dissipation Effect on Numerical Boundary
Layer Thickness

It 15 well known that Roe’s Riemann solver, which includes
information about all waves, can give very accurate representa-
tion of boundary layers in quite a coarse mesh while Van Leer’s
flux-vector splitting, which ignores the linear waves, badly
diffuses the boundary layer (Van Leer ez al. [16]). Thus, any
formulas which add dissipation to the linear waves, e.g., Yee's,
degrade the solution for viscous calculations.

An easy demonstration is to check the numerical boundary
layer thickness on a flat plate. A numerical scheme with more
dissipation will give a thicker numerical boundary layer. The
test uses free stream Mach number (.8 and the adiabatic wall
condition. Along the streamwise direction there are 10 cells
before the leading edge and 40 cells along the plate with uniform
mesh spacing. There are 50 cells in the direction normal to the
plate. The largest gird aspect ration is [000. Figure 6 shows
the velocity profiles at the last column cells normal to the ptate,
where the Re, is [,997,500. The first-order and second-order
schemes without any dissipation and with §¥, = 0.25 (Eq. 1)
give nearly the same results. With §%; = 0.25 (Eq. 9) or (Eq.
10} the calculated boundary layer thickness is unacceptably
large. We therefore do not recommend Yee’s dissipation for
viscous calculations and any proposed method for curing the
blunt nose instability should pass this test case also.
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Von Lavante [17] also made similar investigation on
comparing the resolution of boundary layer by Roe’s Riemann
solver and Van Leer’s flux-vector splitting schemes. His
result also showed that Yee's formula degrades the solu-
tion significantly.

3.3. Formula of Peery and Imlay and Its Improvement

The drawback of Yee’s formula was also understood by
Peery and Imlay [4]. They proposed a formula which uses the
pressure gradient to tune the magnitude of the dissipation. They
changed the eigenvalues (wave speeds) to

(1

23

where

rl 2(|V +a) + _Agl V. in/{direction
' " 4P )
B4 = 4

2
0.2(W,,+a)+—A—P“Vm:

ip in j direction

\

2

( AP
(v, +a)+

AP+ Vo intidirection
€23 = 3
' Alp e
T V.. injdirection.

.\

In their words, A’P is a second difference of pressure averaged
at the cell face, P* is an averaged local pressure, and V.. is the
free stream total velocity. They solved for a Mach 2 flow past
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a fiat plate, to demonstrate their formula is suitable for viscous
calculation when the j direction is normal to the wall. Neverthe-
less, their formula is still not suitable for viscous blunt-body
calculation if the i direction, which was bigger dissipation, is
normal to the body or when it is used 1o compute the flow with
an angle of attack. Another problem of their formula is that,
again in their words, the shock was captured with approximately
three internal points, although the outer two points were nearly
equal to the conditions at the edges of the shock. This is due
to the excessive dissipation at the supersonic part of flow.

Their idea of using the pressure gradient to tune the dissipa-
tion seems to be a good idea. We still use Eq. (8} in Section
3.1 but we change the &,. Our modification is

Sie = (Vo] + @)k + kik,)
62,3 = (IVn + a)(k3kp)’

(12}

HONG-CHIA LIN

k, is similar to A’P, k, serves as the basic dissipation to break
unphysical expansion shock, k, is for smoothing the staircase
shock profile, and 45 is to prevent the instability. The %, at
interface (i + %, j), for example, is equal to the average of k,
at (i + 1,7} and (i, f). The k, at (7,7} is chosen as a formula
similar to that introduced by Jameson er al.[18] for stabilising
central-difference shock calculations, It is given as

Py = 2P+ Py,
P+ 2P;+ Py,

)

and if the local Mach number at cell (4, ) is greater than 1.0
then k, is divided by the iocal Mach number to decrease the
dissipation in the supersonic region. The reason to average the
pressure at two different directions is because large dissipation

(kp)i,j =05 (
(13)
Pi,j-}-l - 2Pi.j + Pi\j—l
Fijp + 2P + Py
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parallel to the shock is found necessary to cure instability and,
using the pressure gradient parallel to the shock alone, it will
be too small to maintain stability. Also, the averaging process
to define the k, at the cell interface smooths dissipation and
thus helps convergence when implicit schemes are used.

Our modification removes the directional dependency of
Peery and Imlay’s formula and decreases the dissipation in
supersonic regions, thus it sharpens the shock transition profile.
For this formula the magnitude of k, is about the order of 107
to 107* in smooth flow and so the total numerical damping is
very small for the linear waves, There are at most two internal
points in the shock transition layer with our formula. Figure 7
shows the result for Mach 8 calculation with &, = 0.25, k, =
0, and k; = 15. Figure 8 is obtained with k, = 5. Figures 9
and 10 show the results for Mach 20 using the same parameters
as Figs. 7 and 8, respectively. From these graphs the solutions
converge better with k; = 5, which helps to smooth the stair-
case-like bow shock profile. The implicit scheme used is a
conservative DDADI scheme; see [9] for more details.

4. CONCLUSION

In this paper we have demonstrated a cure for Roe’s Riemann
solver on the slowly moving shock problem based on the differ-
ence of associated wave speeds, a limiter-off approach for any
higher order schemes, and an improved formula to prevent the
carbuncle phenomenon, especially for viscous flow calcula-
tions.

In general more information about the slowly moving shock
problem and carbuncle phenomenon are revealed, although the
reasons for the superiority of Osher’s Riemann solver on the
slowly moving shock problem and the carbuncle phenomenon

of flux-difference splitting remain unknown. More study is
certainly needed.
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